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3  Measurement of own- and cross-price effects
Qing Liu, Thomas Otter and Greg M. Allenby

Abstract
The accurate measurement of own- and cross-price effects is difficult when there exists a mod-
erate to large number of offerings (e.g., greater than fi ve) in a product category because the 
number of cross-effects increases geometrically. We discuss approaches that reduce the number 
of uniquely estimated effects through the use of economic theory, and approaches that increase 
the information contained in the data through data pooling and the use of informative prior 
distributions in a Bayesian analysis.  We also discuss new developments in the use of supply-side 
models to aid in the accurate measurement of pricing effects.

Introduction
The measurement of price effects is difficult in marketing because of the many competitive 
offerings present in most product categories. For J brands, there are J2 possible effects 
that characterize the relationship between prices and sales. The number of competitive 
brands in many product categories is large, taxing the ability of the data to provide reli-
able estimates of own- and cross-price effects. A recent study by Fennell et al. (2003), for 
example, reports the median number of brands in 50 grocery store product categories to 
be 15. This translates into 225 own- and cross-effects that require measurement in the 
demand system.

Structure-imposing assumptions are therefore required to successfully estimate price 
effects. At one end of the spectrum, a pricing analyst could simply identify subsets of 
brands that are thought to compete with each other, and ‘zero-out’ the cross-effects for 
brands that are assumed not to compete. While this provides a simple solution to the task 
of reducing the dimensionality of the measurement problem, it requires strong beliefs 
about the structure of demand in the marketplace. Moreover, this approach does not 
allow the data to express contrary evidence.

Alternatively, one might attempt to measure directly all J2 own- and cross-price 
effects. However, it is quickly apparent that using a general rule of thumb that one 
should have n data points for each effect-size measured rules out the use of most com-
mercially available data. Using weekly sales scanning data and the rule that n 5 5 
results in the need for 20 years of data in food product categories such as orange juice 
or brownies. One could also engage in the generation of data through experimental 
means, using surveys or fi eld experiments. The data requirements, however, remain 
formidable.

We discuss approaches to measuring price effects that rely on modeling assumptions to 
(i) reduce the number of the effects being measured; and/or (ii) increase the information 
available for measurement. We begin with a brief review of economic theory relevant to 
price effects, and then discuss the use of economic models to measure them. We then turn 
our attention to approaches that increase the available information. These approaches 
are Bayesian in nature, with information being available either through prior information 
or from data pooled from other sources. We provide a brief review of modern Bayesian 
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methods for pooling data, including the use of hierarchical models, and models that 
incorporate the price-setting behavior of fi rms (i.e. supply-side models). We conclude 
with a discussion of measuring price effects in the presence of dynamic effects and other 
forms of interactions.

1.  Economic models for pricing
According to economic theory, own-price effects should be negative and cross-price 
effects should be positive for competitive goods. As the price of a brand increases, its own 
sales should decline. As the price of a competitive brand increases, sales should increase. 
A commonly encountered problem in the use of regression models for measuring price 
effects is that cross-effects are often estimated to have the wrong algebraic sign – i.e. they 
are estimated to be negative when they should be positive. Similarly, but less often, own-
price effects are estimated to be positive when they should be negative.

When price effects estimates have erroneous signs and large standard errors, a pricing 
analyst may be tempted to zero them out and re-estimate the remaining effects as 
described above. However, doing so imposes strong assumptions about the competitive 
nature of demand – it means that price of one brand has no effect on another brand, for 
any price, including zero. While approaches such as Bayesian variable selection (George 
and McCulloch, 1993) help quantify uncertainty in specifi cation searches (Leamer, 1978) 
such as this, they require the strong assumptions that some of the effect-sizes have a prior 
probability of being zero. The assumption of a zero effect is often untenable, especially 
when deriving estimates from aggregate sales data where at least some customers will 
react to the price change. So, while the practice of setting coefficients to zero solves the 
problem of incorrectly signed estimates, it does so by imposing somewhat unbelievable 
assumptions about the structure of demand.

An alternative approach is to employ economic theory to avoid the direct estimation 
of the J2 price effects. As with any theory, the use of an economic model reduces the 
dimensionality of the effects through model parameters.  Economic models of behavior 
are based on the idea of constrained utility maximization:

 Max
x

 U(x1,. . ., xJ ) 5 a
J

j51
cjxj

 subject  to a
J

j51
pjxj # E 

(3.1)

where U(x1,. . ., xJ) denotes the utility of x1 units of brand 1, x2 units of brand 2, . . . and 
xJ units of brand J. In the specifi cation above, utility takes on an additive form that 
implies that the brands are perfect substitutes. Moreover, this model assumes that utility 
increases by a constant amount cj as quantity (xj) increases (i.e. marginal utility is con-
stant). A consumer maximizes utility subject to the budget constraint where pj is the unit 
price of brand j, and E is the budgetary allotment – the amount the consumer is willing 
to spend.

The solution to equation (3.1) can be shown to lead to a discrete choice model, where 
all expenditure E is allocated to the brand with the biggest bang-for-the-buck, cj /pj. 
Assuming that marginal utility has a stochastic component unobservable to the analyst, 
i.e. cj 5 cj exp(ej ) , leads to the demand model:
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 Pr(xk . 0) 5 Prack

pk
.

cj

pj
 for all jb

 5 Pr(ln ck 2 ln pk . ln cj 2 ln pj for all j)  (3.2)

 5 Pr(ln ck 2 ln pk 1 ek . ln cj 2 ln pj 1 ej for all j)

The assumption that the error term, e, is normally distributed leads to a probit model, 
and the assumption of extreme value errors leads to the logit model. More specifi cally, if 
e is distributed extreme value with location zero and scale s, then equation (3.2) can be 
expressed as (McFadden, 1981):

 Pr(xk . 0) 5

exp c ln ck 2 ln pk

s
d

a
J

j51
exp c ln cj 2 ln pj

s
d

 5
exp[Vk ]

a
J

j51
exp[Vj ]

  

(3.3)

where Vk can be written as b0k 2 bp ln pk with bp 5 1/s and the intercept b0k equal to ln 
ck/s. Since the sum of all probabilities specifi ed by (3.3) adds up to 1, one of the model 
intercepts is not identifi ed, and it is customary to set one intercept to zero, leaving J 2 1 
free intercepts and one price coefficient.

Thus the use of an economic model (equations 3.1–3.3) requires J parameters to 
measure the J2 own- and cross-price effects. This represents a large reduction in param-
eters (e.g. from 225 to 15 when J 5 15) that greatly improves the accuracy of estimates. 
Given the estimated parameters in equation (3.3), own- and cross-price effects can be 
computed under the assumption that demand (x) takes on values of only zero or one. 
With this assumption, we can equate choice probability with expected demand, and we 
can compute own- and cross-effects as

 
'ln Prj

'ln pj
5     2 bp (1 2 Prj )  and   

'ln Prj

'ln pk
5 bpPrk (3.4)

where the former is what economists call own elasticity, and the later is the cross-elasticity. 
It measures the percentage change in expected demand for a percentage change in price.

Economic models can be used to improve the measurement of own- and cross-price 
effects in either of two ways. The fi rst is to use the model to suggest constraints for an 
otherwise purely descriptive model. The second is to directly estimate parameters of the 
micro economic model, and then use these to measure the price effects.

Using economic theory to constrain descriptive models
Most descriptive models of demand are of log-log or semi-log form. Researchers have 
extended descriptive models in various ways to achieve more fl exible functional forms 
and to account for uncertainty in the functional form (Kalyanam, 1996; Kalyanam and 
Shively, 1998). For typical marketing data, where the effective unit of analysis usually 
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only supplies a limited amount of data, highly fl exible descriptive models are especially 
likely to benefi t from constraints derived from economic theory. As we will show, the use 
of economic theory to derive prior distributions for descriptive models is especially useful 
in this context. A strong signal in the data can override the implications of economic 
theory but economic theory will dominate data that are not informative to begin with.

Equation (3.4) suggests a number of constraints on price coefficients that can aid direct 
estimation of the J2 own- and cross-price effects using descriptive models. Since bp is 
simply the inverse of the scale of the error term, we have bp > 0 as s2 > 0, implying that

 
'ln Prj

'ln pj
, 0  and   

'ln Prj

'ln pk
. 0 (3.5)

Constraints of this type, which we call ‘ordinal restrictions’, occur frequently in the 
analysis of marketing data. In addition to demand system estimation, the analysis of 
survey data and use of conjoint analysis are settings in which it is desirable to constrain 
coefficients so that they are sensible. In addition to expecting that people would rather 
pay less than more for an offering, researchers also may want to estimate models where 
preference for a known brand is preferred to an unknown brand, or that respondents 
prefer better performance assuming all else is held constant.

Natter et al. (2007) describe a decision support system used by bauMax, an Austrian 
fi rm in the do-it-yourself home repair industry, which employs ordinal restrictions 
to derive own effects with correct (negative) algebraic signs. These effects are used by 
bauMax to derive optimal mark-down policies for the 60,000 stockkeeping units in its 
stores. Store profi ts are reported to have increased by 8.1 percent using the decision 
support system.

Bayesian statistical analysis (see Rossi et al., 2005) offers a convenient solution to 
incorporating ordinal constraints in models of demand. In a Bayesian analysis, the 
analyst specifi es a prior distribution for the model parameters that refl ects his or her 
beliefs before observing the data. The prior is combined with the data through the likeli-
hood function to arrive at the posterior distribution:

 p(u  0  Data) ~ p(Data 0  u )p(u )  (3.6)

where p(u) denotes the prior distribution, p(Data | u) denotes the likelihood function; 
and p(u | Data) is the posterior distribution. In a regression model, for example, we have

 yi 5 xirb 1 ei ;  ei  ~ Normal(0, s2 )  (3.7)

and assuming the error terms are normally distributed, the likelihood of the observed 
data is

 p(Data 0  u 5 (b, s2 ) ) 5 q
n

i51
p(yi 0  xi, b, s2 ) 5 q

n

i51

1

"2ps2
 exp c 2 (yi 2 xi

rb) 2

2s2 d  (3.8)

where xi is treated as an independent variable and used as a conditioning argument in the 
likelihood, and the observations are assumed to be independent given the independent 
variables x and model parameters, u 5 (b, s2). A prior distribution for the regression 
coefficients b typically also takes on the form of a normal distribution:
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 p(b 0  b, s2 ) 5
1

"2ps2
 exp c 2 (b 2 b) 2

2s2 d  (3.9)

where the prior mean, b, and prior variance, s2, are specifi ed by the analyst. The prior for 
s2 is typically taken to be inverted chi-squared.

Allenby et al. (1995) demonstrate that ordinal constraints can be incorporated into the 
analysis by specifying a truncated normal prior distribution in (3.9) instead of a normal 
distribution:

 p(b 0  b, s2, ordinal  restrictions) 5 k exp ca
n

i51

2 (b 2 b) 2

2s2 d Iordinal  restrictions (3.10)

where k is an integrating constant that replaces the factor 1/"2ps2 in equation (3.9), I 
is an indicator function equal to one when the ordinal constraints are satisfi ed, and the 
parameters b and s2 are specifi ed by the analyst. Examples of ordinal constraints are that 
an own-price coefficient should be negative, or that a cross-price coefficient should be 
positive.

From (3.6), the posterior distribution obtained from the likelihood (equation 3.8) and 
truncated prior (equation 3.10) is:

 p(u  0  Data) ~ p(Data 0  u )p(u )Iordinal restrictions (3.11)

which is the truncated version of the unconstrained posterior. Thus the incorporation of 
ordinal constraints in an analysis is conceptually simple. The difficulty, until recently, has 
been in making equation (3.11) operational to the analyst. Analytical expressions for the 
posterior mean and associated confi dence, or credible intervals for the posterior distribu-
tion, are generally not available.

Markov chain Monte Carlo (MCMC) estimation offers a tractable approach to 
working with the truncated posterior distribution in (3.11). The idea is to replace difficult 
analytic expressions with a series of simple, iterative calculations that result in Monte 
Carlo draws from the posterior. A Markov chain is constructed with stationary distri-
bution equal to the posterior distribution, allowing the analyst to simulate draws from 
the posterior. These draws are then used to characterize the posterior distribution. For 
example, the posterior mean is estimated by taking the mean of the simulated draws from 
the posterior. Confi dence intervals and standard deviations are evaluated similarly.

An important insight about simulation-based methods of estimation (e.g. MCMC) 
is that once a simulator is developed for sampling from the unconstrained parameter 
distribution (equation 3.6), it is straightforward to sample from the constrained distribu-
tion (equation 3.11) by simply ignoring the simulated draws that do not conform to the 
restrictions. This is a form of rejection sampling, one of many tools available for generat-
ing draws from non-standard distributions.

Economic theory can also be used to impose exact restrictions on own- and cross-price 
effects. Consider, for example, the constraints implied by equation (3.4). A total of J2 – J 
constraints is implied by equation (3.4) because there are J2 own- and cross-price effects 
and just J parameters in the logit model in (3.3). One set of constraints is related to the 
well-known independence of irrelevant alternative (IIA) constraints of logit models. The 
IIA constraint is typically derived from the logit form in (3.3), where the ratio of choice 
probabilities of any two brands (e.g. i and j) is unaffected by other brands (e.g. k). Thus 
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changes in the price of brand k must draw proportionally equal choice probability share 
from brands i and j.

The IIA property is also expressed in equation (3.4) by realizing that the elasticity of 
demand for brand j with respect to the price of brand k (i.e. hjk) takes the form:

 hjk 5
'ln Prj

'ln pk
5 bpPrk  implying  hjk 5 hik 5 . . . 5 hJk 0  j 2 k (3.12)

Thus the change in the price of brand k has a proportionately equal effect on all other 
choice probabilities. Equation (3.12) implies a ‘proportional draw’ property for cross-
price effects. In a similar manner it can be shown (see Allenby, 1989) that

 
hjk

hji
5

Prk

Pri
 (3.13)

indicating that the magnitude of price elasticity is proportional to the choice probability. 
Equation (3.13) implies a ‘proportional infl uence’ property where an individual’s choice 
probability is infl uenced more by price changes of the brands they prefer. At an aggregate 
level, this implies that brands with greater market share have greater infl uence.

The constraints implied by equations (3.12) and (3.13) can be incorporated into 
descriptive regression models either by direct substitution or through the use of a prior 
distribution. Direct substitution imposes the constraints exactly, and a prior distribu-
tion provides a mechanism for stochastically imposing the constraints. For example, in 
analysis of aggregate data, one could substitute a brand’s average market share (m) for 
the choice probability, and reduce the number of parameters in a regression model by 
using equation (3.13):

 ln mjt 5 b0j 1 hjjln pjt 1 hjkln pkt 1 hjiln pit 1 c

 5 b0j 1 hjjln pjt 1 hjkaln pkt 1
mi

mk
ln pit 1 cb  (3.14)

where t is an index for time. A more formal and fl exible approach is to employ a prior distri-
bution that stochastically constrains model parameters to lie close to the subspace implied 
by the restrictions. Restrictions on the own- and cross-price effects can be expressed as 
functions of parameters, and priors can be placed on their functional values. To express 
the equality in equation (3.12), which is equivalent to h1k 2 h2k 5 . . . 5 h1k 2 hJk, a 
contrast matrix, R, is used:

 R 5 ≥
1 2 1 0 c

1 0 2 1 c

( ( c (
1 0 c 2 1

¥  (3.15)

If equation (3.12) holds exactly, the product Rh with h 5 (h1k,. . . hJk )  is a vector of 
zeros and a prior centered on this belief can be expressed using a normal distribution 
with mean zero:

 p(Rh) 5 (2p) 2 (J21)/2
 0  S 0   21/2exp c 2

1
2

(Rh)S21 (Rh) r d  (3.16)
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An advantage of this approach is that the prior distribution can be used to control the 
precision of the restriction through the variance–covariance matrix S.

Montgomery and Rossi (1999) use such an approach to impose restrictions on price 
elasticities in a descriptive model of demand. This approach assumes that the prior dis-
tribution can be constructed with measures that are (nearly) exogenous to the system of 
study. This assumption is also present in equation (3.14) when employing average market 
shares, mi, to impose restrictions. It is reasonable when there are many brands in a cat-
egory, such that any one brand has little effect on the aggregate expenditure elasticity for 
the category, when there are sufficient time periods so that the average market share for 
a brand is reliably measured and when there are no systematic movements in the shares 
across time.

Formal approaches to demand estimation
The use of linear models to estimate own- and cross-price effects has a long history in 
economics. Linearity, however, has been limiting research to a restricted number of utility 
functions. Demand functions, in general, are derived by solving for the demand that 
maximizes utility subject to the budget (i.e. income) constraint. For the Cobb–Douglas 
utility function, the demand function can be shown to be of log-log form where the 
logarithm of quantity is a linear function of logarithm of income and logarithm of price 
(Simon and Blume, 1994, Example 22.1). Other utility functions do not result in demand 
functions that are easily estimable with OLS (ordinary least squares).

Some analysts elect to start with the indirect utility function rather than the utility 
function. The indirect utility function is defi ned as the maximum utility attainable for a 
given set of prices and expenditure. It can be shown that differentiating the indirect utility 
function using Roy’s identify (see Simon and Blume, 1994, Theorem 22.5) leads to the 
demand equation in which demand is expressed as a function of price and income. Varian 
(1984, ch. 4) demonstrates that this approach usually leads to demand functions that are 
nonlinear. Some indirect utility functions, such as the translog function of Christensen 
et al. (1975), lead to linear systems for estimation if a representative economic agent is 
assumed and consumer heterogeneity is thus ignored. Integrating over a distribution 
of heterogeneity results in a nonlinear specifi cation that requires the use of alternative 
methods of estimation (see Allenby and Rossi, 1991 for an exception).

A direct approach to demand estimation is to derive the likelihood of the data cor-
responding to constrained utility maximization. Distributional assumptions are made 
about stochastic errors that enter the utility function, understood as information known 
to the consumer but not observed by the analyst, and from these primitive assumptions 
the likelihood is derived. Kim et al. (2002) provide an example of such an approach, 
where utility is specifi ed with diminishing marginal returns:

 max
x

 U(x1, . . ., xJ ) 5 a
J

j51
cj (xj 1 gj )

aj

 subject to a
J

j51
pjxj # E

 (3.17)

Here, gj translates the utility function to allow for corner and interior solutions. 
Diminishing marginal returns occur if aj is positive and less than one. The likelihood is 



68  Handbook of pricing research in marketing

obtained by differentiating the Lagrangian U(x) 2 l(p9x 2 E) to obtain the Kuhn–Tucker 
(KT) conditions as follows:

 
'U
'x1

2 lp1 5 . . . 5
'U
'xJ

2 lpJ 5 0, that is, 
'U
'x1

 
1
p1

5 . . . 5
'U
'xJ

 
1
pJ

5 l

where 'U/'xj 5 cjaj (xj 1 gj )
aj21, j 5 1,. . . J. Assuming that log marginal utility can 

only be measured up to additive error, i.e. lncj 5 lncj 1 ej, and that the observed data 
conform to the KT conditions, we have for both xi and xj positive:

 ln(ciai (xi 1 gi )
ai21 )  2 ln pi 1 ei 5 ln(cjaj (xj 1 gj )

aj21 )  2 ln pj 1 ej (3.18)

or

  ( ln(ciai (xi 1 gi )
ai21 )  2 ln pi )  2 ( ln(cjaj (xj 1 gj )

aj21 )  2 ln pj ) 5 ej 2 ei (3.19)

Equation (3.19) provides a basis for deriving the likelihood of the data, p(Data | u 5 (c, 
a, g)) through the distribution of (ej 2 ei). The distribution of the observed data {xi, xj} 
is obtained as the distribution of the calculated errors {ei, ej} multiplied by the Jacobian 
of the transformation from e to x. Modern Bayesian (MCMC) methods are well suited 
to estimate such models because they require the evaluation of the likelihood only at spe-
cifi c values of the parameters, and do not require the evaluation of gradients or Hessians 
of the likelihood. Once the parameters of the utility function are available, estimates of 
own- and cross-effects can be obtained by solving equation (3.17) numerically for various 
price vectors and computing numeric derivatives.

Standard discrete choice models such as multinomial logit and probit models are the 
simplest examples of the direct approach. Utility is assumed to take a linear form with 
constant marginal utility (equation 3.1), and random error is introduced as shown in 
equation (3.2). Constant marginal utility implies that as income increases consumers 
simply consume more of the same brand rather than switching to a higher-quality brand. 
Allenby and Rossi (1991) use a non-constant marginal utility (non-homothetic), which 
motivates switching from inferior goods to superior goods as income increases. As a 
consequence, price responses are asymmetric. Price changes of high-quality brands have a 
higher impact on low-quality brands than vice versa (see Blattberg and Wisniewski, 1989 
for a motivation of asymmetric price response based on heterogeneity).

Chiang (1991) and Chintagunta (1993) remove the ‘given purchase’ condition inher-
ent to discrete choice models and model purchase incidence, brand choice and purchase 
quantity simultaneously through a bivariate utility function. A generalized extreme value 
distribution implies both a probability to purchase and a brand choice probability. A fl ex-
ible translog indirect utility function is maximized with respect to quantity given a brand 
is purchased. Variants of this approach have been used by Arora et al. (1998), Bell et al. 
(1999), and Nair et al. (2005).

The translog approach results in price effects that can be decomposed into three parts: 
changes in purchase probability, changes in brand choice given purchase occurrence; 
changes in purchase quantity given purchase occurrence and brand selection. Bell et al. 
(1999) show that these three components are infl uenced in different ways by exogeneous 
consumer-, brand- and category-specifi c variables.
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The linear additive utility specifi cation popular in marketing implies that all brands are 
perfect substitutes, so that only one brand is chosen as the utility-maximizing solution. 
Nonlinear utility functions such as (3.17) allow for both corner and interior solutions. 
That is, a consumer chooses one alternative or a combination of different alternatives as 
the result of utility maximization. Thus the model quantifi es the tradeoff between price 
and the variety of the product assortment (see Kim et al., 2002, 2007 for details). A differ-
ent form of nonlinear utility function is used by Dubé (2004), who motivates the choice 
of more than one brand by multiple consumption occasions that are considered during 
a customer’s shopping trip.

2.  Improving measurement with additional information
An alternative to constraining and/or reducing the parameter space through the use of 
economic models is to use approaches that attempt to increase the available information 
for estimation. We investigate two approaches to data pooling. The fi rst is with the use 
of random-effects models that effectively borrow information from other similar units 
through the random-effects distribution. The second approach pools information from 
the supply side. This approach views the prices themselves as endogenous to the system 
of study, and models are specifi ed as a system of demand and supply equations. Both 
approaches have become practical in applications with the advent of modern Bayesian 
methods.

Pooling across units
Random-effects models add another layer to the Bayesian prior distribution. Equation 
(3.9) is the prior associated with one unit of analysis, where the unit might be sales at a 
specifi c retailer or in a specifi c geographic region. When multiple units of analysis are 
available, it is possible to pool the data by specifying a relationship among the model 
parameters:

 p(Datai 0  ui )  for i 5 1, . . ., N

 p(ui 0  z)

 p(z)  (3.21)

where z are known as hyper-parameters – i.e. parameters that describe the distribution 
of other parameters. For example, p(Datai | ui) could represent a time-series regression 
model for sales of a specifi c brand in region i, with own- and cross-effects coefficients 
ui. The second layer of the model, p(ui | z), is the random-effects model. A commonly 
assumed distribution is multivariate normal. Finally, the third layer, p(z), is the prior 
distribution for the hyper-parameters.

Pooling occurs in equation (3.21) because ui is present in both the fi rst and second 
equations of the model, not just the fi rst. The data from all units are used to inform the 
hyper-parameters, and as the accuracy of the hyper-parameter estimates increases, so 
does that of the estimates of the individual-level parameters, ui. The posterior distribution 
of the hierarchical model in (3.21) is

 p( {ui}, z 0  {Datai} ) ~ q
N

i51
aq

Ti

t51
p(Datait 0  ui ) bp(ui 0  z)p(z)  (3.22)
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which highlights a key difference between the Bayeisan and non-Bayesian treatment 
of random-effects models. In a Bayesian treatment, the posterior comprises the hyper-
parameters and all individual-level parameters. In a non-Bayesian treatment, parameters 
are viewed as fi xed but unknown constants, the analysis proceeds by forming the margin-
alized likelihood of the data:

 p( {Datai}  0  z) 5 q
N

i51
3 aq

Ti

t51
p(Datait 0  ui ) bp(ui 0  z)dui (3.23)

The Bayesian treatment does not remove the individual-level parameters from analysis, 
and inferences about unit-specifi c parameters are made by marginalizing the posterior 
distribution in equation (3.22):

 p(ui 0  {Datai} ) 5 3p( {ui}, z 0  {Datai} )  d{u2 i, z} (3.24)

Modern Bayesian methods deliver the marginal posterior distribution of model param-
eters at no additional computational cost. The MCMC algorithm simulates draws from 
the full posterior distribution of model parameters in (3.22). Analysis for a particular 
unit, ui, proceeds by simply ignoring the simulated draws of the other model param-
eters, u

2i and z. Thus the hierarchical model, coupled with modern Bayesian statistical 
methods, offers a powerful and practical approach to data pooling to improve parameter 
estimates.

Allenby and Ginter (1995), and Lenk et al. (1996) demonstrate the efficiency of the 
estimates obtained from the hierarchical Bayes approach in comparison with the tradi-
tional estimation methods. The number of erratic signs on price-elasticity estimates is 
signifi cantly reduced as more information becomes available via pooling. Montgomery 
(1997) uses this methodology to estimate store-level parameters from a panel of retailers. 
Ainslie and Rossi (1998) employ a hierarchical model to measure similarities in demand 
across categories. Arora et al. (1998) jointly model individual-level brand choice and 
purchase quantity, and Bradlow and Rao (2000) model assortment choice using hierar-
chical models.

Bayesian pooling techniques have found their way into practice through fi rms such 
as DemandTec (demandtec.com), who specialize in retail price optimization. Current 
customers of DemandTec include Target, WalMart and leading grocers such as Safeway 
and Giant Eagle. A major challenge in setting optimal prices at the stockkeeping unit 
level is the development of demand models that accurately predict the effects of price 
changes on own sales and competitive sales. Retailers want to set prices to optimize 
profi ts in a product category, and a critical element involves estimating coefficients with 
correct algebraic signs (i.e. own-effects are negative, cross-effects are positive) so that an 
optimal solution exists. For example, if an own-effect is estimated to be positive, it implies 
that an increase in price is associated with an increase in demand, and the optimal price 
is therefore equal to positive infi nity. This solution is neither reasonable nor believable. 
DemandTec uses hierarchical Bayesian models such as equation (3.21) to pool data 
across similar stockkeeping units to help obtain more accurate price effects with reason-
able algebraic signs.

Another industry example of the use of hierarchical Bayesian analysis is Sawtooth 
Software (sawtoothsoftware.com), the leading supplier of conjoint software. Conjoint 
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analysis is a popular quantitative technique used to evaluate consumer utility for 
attribute levels, and express them in terms of a common metric. For example, consumer 
preference for different credit cards can be viewed in terms of utility for different interest 
rates, grace periods, annual fees, etc. Conjoint analysis estimates the part-worths of the 
levels of these attributes. In most studies, price is specifi ed as an attribute, and consumer 
price-sensitivity (bp) is measured at the individual-respondent level using a hierarchical 
model. The individual-level estimates are then used to predict changes in demand for 
all products in a category in response to changes in product attributes, including price. 
Data pooling via a hierarchical model structure is critical for obtaining individual-level 
part-worths because of the limited number of conjoint questions that can be asked of a 
respondent in an interview. Sales for the hierarchical Bayes version of Sawtooth’s con-
joint software now dominates their non-Bayesian version.

Incorporating supply-side data
Up to this point we have considered models where prices are viewed as explanatory of 
sales, and also independently determined. This assumption is acceptable when analyzing 
survey and experimental data because prices are set by the analyst. However, when data 
are from the marketplace, prices are set in anticipation of demand and profi ts. Observed 
prices are infl uenced by the preferences and sensitivities of consumers, the same factors 
(e.g. utility function parameters) that infl uence the magnitude of the own- and cross-price 
effects.

When explanatory variables are endogenously determined, the likelihood will comprise 
multiple equations that form a system of equations. Exceptions to this general rule are 
discussed by Liu et al. (2007). As discussed in the use of formal economic models above, 
the key in conducting analysis of simultaneous equation systems is to relate primitive 
assumptions about how errors enter the model to the likelihood for the observed data.

Consider, for example, a monopolist pricing problem using a constant elasticity model, 
where it is assumed that the variation in prices over time is due to stochastic departures 
from optimal price-setting behavior. The likelihood for the data is a combination of a 
traditional demand model:

 ln yt 5 b0 1 b1ln pt 1 et;  et  ~ Normal(0, s2
e )  (3.25)

and a factor for the endogenous price variable. Optimal pricing for the monopolist can 
be shown to be (see for example, Pashigian, 1998, p. 333):

 pt 5 mca b1

1 1 b1
beyt;  yt  ~ Normal(0, s2

y )  (3.26)

where mc denotes the marginal cost of the brand, and a supply-side error term has been 
added to account for temporal variation of observed prices from the optimal price. 
Taking logs of equation (3.26) yields

 ln pt 5 ln mc 1 lna b1

1 1 b1
b 1 yt;  yt  ~ Normal(0, s2

y )  (3.27)

Equations (3.25) and (3.27) form a system of equations that effectively pools supply-side 
information and improves the estimation of the own-price effect, b1, if the marginal cost 



72  Handbook of pricing research in marketing

of the brand is known. That is, the average level of price is informative about b1 given 
marginal cost. The likelihood for equations (3.25) and (3.27) is obtained by solving for 
error terms:

 et 5 ln yt 2 b0 2 b1ln pt   ~  Normal(0, s2
e )

 yt 5 ln pt 2 ln mc 2 ln a b1

1 1 b1
b  ~ Normal(0, s2

y )
 (3.28)

and computing:

 p(Data 0  u ) 5 q
T

t51
p(yt, pt 0  b0, b1, s

2
e, s

2
y )

 5 q
T

t51
p(et, yt 0  b0, b1, s

2
e, s

2
y ) 3 J(et,yt)S (yt,pt) (3.29)

 5 q
T

t51
p(et, yt 0  b0, b1, s

2
e, s

2
y ) 3

1
yt 

pt

In this example, the supply-side equation offers additional information that is useful for 
estimating the own-price effect in two ways. The fi rst way, as mentioned above, is to help 
locate the value of b1 if marginal cost is known. The second way is through an ordinal 
constraint imposed by the supply-side model – i.e. b1 < 21 for the supply equation to 
be valid. If 21 # b1 < 0, b1/(11b1) is negative, equation (3.26) no longer yields the price 
that maximizes profi ts and thus the logarithm in equation (3.27) is not defi ned. Optimal 
pricing behavior with positive, fi nite prices exists only when own-price effects are elastic. 
Thus the supply-side equation constrains the estimates of price effects by merely ascer-
taining that optimal pricing with positive, fi nite prices is possible. This aspect of supply-
side analysis is investigated in more detail by Otter et al. (2007).

When the error terms, et and yt, are correlated, analysis without the supply side leads 
to inconsistent estimates (Besanko et al. 1998; Villas-Boas and Winer, 1999). The typical 
rational for correlated demand- and supply-side shocks is the presence of a common 
omitted variable that raises prices and demand at the same time – e.g. a retailer cor-
rectly anticipates a demand shock and simultaneously raises prices. Thus the presence of 
en dogenous price variation requires joint estimation of demand- and supply-side equa-
tions to obtain consistent estimates of own- and cross-price effects.

Supply-side equations may be reduced-form linear models (Villas-Boas and Winer, 
1999), or structural models where the supply-side equations are obtained through 
maximizing objective functions of fi rms and/or retailers. For example, Sudhir (2001a) 
obtains the supply-side pricing equations by assuming that the fi rm maximizes the sum 
of own profi ts and weighted competitor profi ts, where the weight on competitor profi ts 
characterizes cooperative (positive weight) or aggressive (negative weight) competitive 
behavior. Chintagunta (2002) obtains the supply-side pricing equations by assuming that 
retailers set prices to maximize a weighted sum of category profi ts and store brand share 
while accounting for manufacturers’ actions, store traffic effects and retail competition. 
Chintagunta and Desiraju (2005) obtain supply-side equations by maximizing a profi t 
function that accounts for fi rm interactions within a geographic market as well as inter-
actions across all geographic markets. Other examples of structural supply-side models 
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include Besanko et al. (1998), Sudhir (2001b), Draganska and Jain (2004) and Villas-Boas 
and Zhao (2005).

Techniques to obtain parameter estimates in demand- and supply-side equations 
include generalized method of moments (GMM) estimation using instrumental variables 
(see Berry, 1994; Berry et al., 1995; and Nevo, 2001), maximum likelihood estimation 
(see Villas-Boas and Winer, 1999; Villas-Boas and Zhao, 2005; and Draganska and Jain, 
2004), and the Bayesian approach (see Yang et al., 2003).

3.  Concluding comments
The measurement of own- and cross-price effects in marketing is complicated by many 
factors, including a potentially large number of effects requiring measurement, heterogen-
eity in consumer response to prices, the presence of nonlinear models of behavior, and the 
fact that prices are set strategically in anticipation of profi ts by manufacturers and retailers. 
Over the course of the past 20 years, improvements in statistical computing have allowed 
researchers to develop new models that improve the measurement of price effects.

The measurement of price effects is inextricably linked to choice and demand models, 
and more generally consumer decision-making. These are very active research areas, and 
the implications of many of the more recently published choice models for the measure-
ment of price effects and price setting have yet to be explored. In this chapter we focused 
on static models that imply (only) an immediate and continuous price response. There is 
active research on dynamic price effects. Dynamic price effects refer to the effects of price 
change on future sales as mediated by stockpiling and/or increased consumption. Effects 
to be measured include immediate, future and cumulative (immediate 1 future) effects of 
promotional and/or regular price changes, which may differ in sign and magnitude. For 
example, as shown by Kopalle et al. (1999), promotions have positive immediate effects 
but negative future effects on baseline sales. Autoregressive descriptive demand models 
(see, e.g., Kopalle et al., 1999; Fok et al., 2006) and utility-based demand models (Erdem 
et al., 2003) have recently been used to account for carry-over effects from past dis-
counts, forward-looking consumer behavior and competitive price reactions. The same 
approaches are taken to dealing with measurement difficulties – using theory to impose 
restrictions on parameters, Bayesian pooling, and adding supply-side information.

Finally, there is a large behavioral literature documenting the infl uence of consumer 
cognitive capacity, memory, perceptions and attitudes in reaction to price (see Monroe, 
2002 for a review). An active area of current research develops demand models that incor-
porate such behavioral decision theory for an improved measurement of price effects 
(Gilbride and Allenby, 2004, 2006).
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